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Recently there has been considerable shown that both explanations of the peak in the
interest in GaAs/AIGaAs double-barrier struc- I-V curves lead to the same prediction for the
tures. These structures exhibit a number of I-V response. At this point it is not clear
interesting features, including negative differen- whether these two mechanisms are fundamen-
tial resistance (NDR) [11, fast response times tally distinct.
121, and bistability in current-voltage response
[31. For applications purposes, these structures It is the purpose of this report to show
are particularly attractive because of their NDR that within a simple effective-mass picture, a
and fast response times. The regions of NDR in quantum mechanical calculation of the resonant
the I-V characteristics are generally associated level lifetime is consistent with existing ex-
with the sharp peaks in the transmission coeffi- perimental observations [2]. Our results can be
cient at certain (resonant) energies, and a theory used to estimate the lifetimes of the resonant
of I-V response based on this assumption was levels for a range of aluminum concentrations
proposed 14]. and barrier and well dimensions.

The experiments of Sollner et al. [2] We solve the one-dimensional effective-
indicate that there is significant current response mass Schrodinger equation with the double-
to applied fields at frequencies as high asf= 2.5 barrier potential
THz. This suggests that processes responsible
for the NDR have characteristic times which are = 0 0 <x <a
shorter than the period 1ff= 4 x 10- 13 s. The V(x) .= V a<x<a+b (1)
characteristic times involved in resonant trans- .= 0 x > a + b
port are believed to be the lifetimes of the
quasi-bound levels between the barriers [51. At where V(x) is an even function of x (the growth
low frequencies, such that I/f >> c, where 'T is direction). In the half-space x > 0, we take the
the lifetime of the lowest energy quasi-bound even wavefunctions to be
state, current response is expected to follow the
dc I-V curve. However, at high frequencies, = A cos(gx) 0 <x <a
where 1/f << x, one expects negligible resonant = B exp(glx)
response to the applied voltage. VF(x) + C exp(-g Ix) a<x<a+b (2)

A semiclassical estimate of the lifetime " = D exp(igx) x>a+b

has been made by Luryi [61; however, when where
compared with experiments 121, his estimate is [2mc 0

too large by almost three orders of magnitude. hI -V

In order to reconcile his predictions with experi-
ment, Luryi proposed a kinematic argument and the wavevectors, g and gI, and energy
(sequential tunneling) to explain the observed eigenvalues, E = 1 2G2/2mc, are complex
NDR. Recently, Weil and Vinter 171 have
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numbers [8]. This wavefunction represents a time dependence given by exp(-i40j)
particle in the well which can tunnel out to the exp(-t/2zc), where the energy of a resonant
left or right. Matching the wavefunction and its level, *fQ,, and the lifetime, %, are functions of
first derivative at x = a and x = a + b gives a the roots z.:
system of four homogeneous equations for the
constants A, B, C, and D. These equations will = c Re [z2]

have a nontrivial solution if we require the il o .(

determinant of the coefficient matrix to vanish. = -1 , (5)
For the wavefunctions of equation (2), this 2ool Imtz J

condition gives the following equation for the
allowed wavevectors: where o is defined by

h(,) cot(z) + W /2mca 2

h(z)[+exp{28h(z)]+iz[l-exp{2h()1 =0 , (3)
h(z) [I -exp{2~hmz)}]+ illexpiahmJ I I If we order the roots with positive real parts

according to Re(z) < Re(z2) < Re(z3) .. ., the
where z = ga, 8 - b/a, and the dimensionless increasing index n labels resonant levels of
potential is defined as U = 2m a2Vtf 2. The increasing inex n delresn lee.

complex function h(z) is chosen such that
In figure 1 we plot the logarithm of the

(z) ffi [u- z2]'f Re(z 2) < U ,lifetime of the lowest resonant level as a func-

h (z) = i [z2 - U]'f2  Re(z2) > U , tion of 8, for several values of U. The curves

are straight lines, which indicates that the
where the principal branch is taken for the lifetime is an exponential function of 8, as one
square root. When Re(z2) < U, the resonant might expect. For a given well width, a, the
level lies below the tops of the barriers; when lifetime increases with both the barrier height

> U, the resonant level lies above the tops of the and width. In figure 2 we show the energy of
barriers. Wavevectors for the odd eigenfunc- the lowest resonant level, ftl, as a function of

tions satisfy an equation identical to equation 8. For a given barrier height, the energy has a
(3), but with cot(z) replaced by -tan(z). strong dependence for narrow barriers (values of

8 : 1). Note also that for a given barrier width,
The roots of equation (3) are located at the energy of the resonant state increases with

ze n - ±1, ±2, ±3,.. ., such that z. - -z%. We barrier height, which is a simple consequence of

have numerically solved for these roots as a electron confinement.
function of U and 8. All roots have negative
imaginary parts [91, and the magnitude of both We apply our results to the experiments
the real and imaginary parts increases with of Sollner et al. [21, which had the parameter
increasing n. This leads to wavefunctions with a values a f 24 A, 8 - 2, and V - 0.23 eV. Using
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the effective mass for conduction electrons in 1.5-
GaAs, mc = 0.067 io, the frequency scale is coo
- 1.38 x 104 s-1 , and U = 2.5 is the dimension- 6

less potential. For these parameter values we -
find the lifetime of the lowest resonance to ber 1.0- '4

= 6.4 x 10-13 s. We believe this value for the
lifetime is consistent with the high frequency
experiments, considering the degree of ap-

proximation involved. We have ignored the 0
effects of bias voltage on the potential energy 0.5
shape and have used the effective mass theory in
a rather cavalier manner, ignoring both the
mixing of r- and X-point states for high alumi-
num concentration 1101 and details of band 0.0
structure I1I]. We believe that a more careful 0.0 1.0 2.0 3.0
treatment including these effects would not
substantially alter our results.

10.0 Figure 2. The energy of the lowest resonant state, 1

6 (all in the text), is plotted (in units of * q.) versus
S, for several values of U.
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